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Abstract. Widely cited evidence for scaling (self-similarity) of the returns of stocks and other
securities is inconsistent with virtually all currently-used models for price movements. In particular,
state-of-the-art models provide for ubiquitous, irregular, and oftentimes high-frequency fluctuations
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data is aggregated in demonstrations of self-similarity of returns. Stochastic volatility renders these
models, which are based on variants and generalizations of random walks, incompatible with self-
similarity. We show here that empirical evidence for self-similarity does not actually contradict the
analytic lack of self-similarity in these models. The resolution of the mismatch between models
and data can be traced to a statistical consequence of aggregating large amounts of non-stationary
data.
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1 Background

The 1900 dissertation of Louis Bachelier, on The Theory of Speculation (Bachelier, 1900),
proposed a random-walk model for security prices. The basic model, elaborated to accom-
modate heavy-tailed distributions and stochastic volatilities, still provides a compelling and
nearly universally accepted foundation for a theory of price movements. At the same time, a
salient and much-discussed feature of the data is the remarkably precise self-similarity of the
returns, relative to the return interval, of many of these securities. This was first observed
by Mandelbrot (1963) and has since been found in multiple data sets involving a range of
securities and time periods (cf. Evertsz, 1995, Mantegna & Stanley, 1995, Guillaume et al.,
1997, Gopikrishnan et al., 1999, Podobnik et al., 2000, Ivanov et al., 2001, Wang and Hui,
2001, Gencay et al., 2001, Xu & Gencay, 2003, Ivanov et al., 2004, Matteo et al., 2005,
Matteo, 2007, Glattfelder et al., 2011, and Podobnik et al., 2011, to name a few). With a
straightforward calculation we will conclude that state-of-the-art models of price movements
do not generate self-similar processes (see §2), and are therefore at odds with the empirical
scaling of returns. We will then show (§3) that scaling of empirical distributions is likely to
be a statistical consequence of the aggregation of large amounts of non-stationary data.

Bachelier’s remarkable thesis included a first construction of Brownian motion, and pro-
posed a suitably scaled version as a model for the price dynamics of securities: S(t) =
S(0) + �w(t), in which w is a “standard” Brownian motion and � is the standard deviation
of the change in price after one unit of time. The model has evolved, incrementally, to better
accommodate theoretical and empirical constraints. For example, the realization that the
scale of an ensuing price increment is typically and logically proportional to the current price,
rather than independent of it, leads to the geometric (instead of linear) Brownian motion:

R(t)
.

= lnS(t)� lnS(0) = �w(t) (1.1)

after correcting for a possible drift associated with risk-free investment.
Additionally, the common observation that returns are too peaked and heavy-tailed to

be consistent with the normal distribution led Mandelbrot (1963) to seek a replacement for
the Brownian motion, while preserving the compelling argument that increments of prices
arise from large numbers of small influences. As stable processes are the only possible limits
of rescaled sums of independent random variables (the “generalized central limit theorem,”
Lévy, 1925), and as the resulting theoretical return distributions are a better, and often
excellent, fit to empirical returns, Mandelbrot proposed models of the same form as (1.1)
but with w(t) interpreted more generally as an ↵-stable Lévy process, ↵ 2 (0, 2]. The special
case ↵ = 2 recovers ordinary Brownian motion.

Further refinements are dictated by the fact that volatilities, modeled by the scaling
factor � (which is a standard deviation only in the case ↵ = 2), are almost never constant
(� = �(t), “stochastic volatility” cf. Shephard, 2005 and Shapira, 2011 ). And in fact the
evidence is for very rapid fluctuations in �(t) (e.g. the left-hand panel in Figure 1 is typical).
A parsimonious extension of (1.1), whether or not ↵ = 2, is through the stochastic integral

R(t) = lnS(t)� lnS(0) =

Z
t

0

�(s)dw(s) (1.2)
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which falls out of the same thought experiment that took us from discrete and small price
movements to the stable process w(t), except that a step at time t has scale proportional to
�(t) rather than �.

Many lines of thought lead to more-or-less the same thing. For example, the function
�(t) can be thought of as itself a stochastic process, dependent or independent of w, or as a
given deterministic (perhaps historical) volatility trajectory. Many authors prefer to think
of �(t) as a proxy for, or measure of, market activity or “market time,” and in fact under
very general conditions the result of a random time change can also be expressed by (1.2), cf.
Clark (1973), Geman et al. (2001) and Veraart & Winkel (2010). We will assume that either
�(t) is deterministic or, if stochastic, it is independent of w, in which case we will condition
on a sample path of �(t) so that the two situations amount to the same thing. In any case, it
would be a mistake to think of �(t) as statistically stationary, given the prototypical intraday
volatility profile (including high values in the opening and closing thirty minutes) and the
overall rise in volatility with rise in volume through the years and decades over which return
profiles are studied.

The question we wish to examine is an apparent incompatibility between the class of
models embodied by equation (1.2) and the widely cited evidence for scaling of returns on
stock prices and other financial processes.

2 Are Random-Walk Models Consistent with Empiri-

cal Scaling?

Assume (1.2) for t 2 [0, T ] and consider the sequence of returns, R(h)
1 , R

(h)
2 , . . . , R

(h)
N

, over
intervals of length h, where

R

(h)
k

= ln
S(kh)

S((k � 1)h)
=

Z
kh

(k�1)h

�(s)dw(s), k = 1, 2, . . . , N

and N = N

(h) = bT/hc (i.e. T over h rounded down to the nearest integer). The observa-

tions of Mandelbrot and others suggest that the distribution of R(h)
k

is nothing more than a

scaled version of the distribution of R(1)
k

. In other words, for some scaling parameter ↵ the

probability mass function of R(h)
k

, say f

(h)
k

(r), is the same as the probability mass function of

h

1/↵
R

(1)
k

, in which case f (h)
k

(r) = h

�1/↵
f

(1)
k

(h�1/↵
r), by change of variables. Indeed, in a par-

ticularly innovative and convincing approach, Mantegna & Stanley (1995) compare f

(h)
k

(0)

(the probability of zero return over h minutes) to f

(1)
k

(0) (the corresponding probability over

1 minute) and find that by setting ↵ = 1.40 the entire distribution of returns, f

(h)
k

(r), on the

S&P 500 from the five-year period 1984–1989, is virtually indistinguishable from the scaled

distribution of one-minute returns, h

�1/↵
f

(1)
k

(h�1/↵
r), over the three orders of magnitude

h = 1 minute to h = 1,000 minutes.
If, in 1.2, w(t) is an ↵-stable Lévy process, as would be assumed of a random-walk

model, then L{w(ht)} = L{h

1/↵
w(t)} (henceforth w(ht) ⇠ h

1/↵
w(t), for short), meaning

that the two stochastic processes, w(ht), t � 0, and h

1/↵
w(t), t � 0, are statistically

indistinguishable. We would appear to have an explanation for the empirical scaling of
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returns: the returns simply inherit the scaling characteristics of the ↵-stable process w, with,
for example, something approximating ↵ = 1.4 in the model generating the data examined
by Mantegna & Stanley. But, concerning returns,

R

(h)
k

=

Z
kh

(k�1)h

�(s)dw(s) =

Z
k

(k�1)

�(hs)dw(hs) ⇠ h

1/↵

Z
k

(k�1)

�(hs)dw(s) 6= h

1/↵
R

(1)
k

(2.1)

unless �(t) is constant.
To the contrary, the weight of evidence is that �(t) is far from constant, at least over the

return intervals at which scaling behavior is often demonstrated. Consider, for example, the
101-minute sample trajectory displayed in the left-hand panel of Figure 1, which was drawn
from a GARCH model with p = q = 10 (e.g. Shephard, 2005), estimated from the entire year
of one-minute returns of IBM in 2005. (Lower-order fits, with smaller p and or q, estimated
over di↵erent securities in di↵erent eras, all look and behave similarly.) Fluctuations are
extreme, even over very short intervals. The GARCH model assumes Gaussian noise (↵ = 2),
but there is plenty of statistical evidence for equally rapid changes in volatility whether or
not ↵ = 2.

In light of equation (2.1), how can models that are consistent with (1.2) be reconciled with

evidence that returns are stable (i.e. scaling) random variables: R

(h)
⇠ h

1/↵
R

(1)
, for suitable

↵?

In fact, even when returns are generated artificially from (1.2) they appear to scale, as
in the experimental results shown in the right-hand panel of the figure, where the GARCH
data was used in (1.2) to produce prices and their returns at multiple intervals.1 We o↵er
the following theorem, together with the ensuing discussion about rate of convergence, as a
plausible explanation.

3 Analytic Results and Discussion

We consider the class of models defined by (1.2), where w(t) is a generalized random walk (“↵-
stable Lévy processes”), and where �(t) is assumed to be either deterministic or independent
of the random walk w. In either case we assume that �(t) is continuous.

We are interested in studying the empirical return distribution, which is an aggregation
of the observed returns over the interval t 2 [0, T ]. We anticipate showing that the collection

of returns R(h)
k

, k = 1, 2, . . . , N (h), will generate a histogram (empirical distribution) indis-

tinguishable from that of h1/↵)
R

(1)
k

, k = 1, 2, . . . , N (1), regardless of the return interval h.

Equivalently, our goal is to show that the collections h�1/↵
R

(h)
k

, k = 1, 2, . . . , N (h), produce
the same empirical distribution. With this in mind, we define the cumulative distribution

1A similar experiment can be performed with ↵ 6= 2 by re-interpreting the GARCH-generated volatility
trajectory, �(t), t � 0, as the scaling function of an ↵-stable process, as in equation (1.2). This involves
generating ↵-stable variables, which can be done with modern software easily and e�ciently. We performed
this experiment systematically for ↵ values between 0.5 and 2.0; in each case the results were virtually
identical to those shown in the Figure 1.
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function of the scaled returns h�1/↵
R

(h)
k

by

F̂

(h)(r) =
1

N

(h)

N

(h)X

k=1

1(�1,r)(h
�1/↵

R

(h)
k

)

where 1
A

(x) is the “indicator function,” indicating x 2 A with 1 and x 62 A with 0. For each
r and h, F̂ (h)(r) is the fraction of the scaled returns that are less than r.

The theorem below identifies a single cumulative distribution function, F (r), as the limit
of each of the empirical distributions, F̂ (h)(r), thereby o↵ering a resolution of the mismatch
between observations of self-similarity and models of the form (1.2).

Using �(t), define a random volatility V by V = �(U), where U has the uniform distri-
bution on [0, T ], and let W be independent of V with W ⇠ w(1), where w(t) is the ↵-stable
process in (1.2). Let F (r) = Prob{VW < r}. Then

Theorem.

sup
r

|F̂

(h)(r)� F (r)| ! 0

as h # 0.

Various forms of convergence of the empirical distributions F̂ (h)(r) to F (r) are equivalent.
Please see the appendix for precise statements about the convergence in the theorem, some
of the equivalent formulations, and for the proof itself along with a detailed discussion and
analysis of the proof.

Hence the properly scaled empirical distribution on returns is independent of the size
of the return interval, for all intervals su�ciently small, i.e. the empirical distributions
scale. Specifically, the empirical distribution on returns, standardized by h

�1/↵, approaches
a mixture of distributions of ↵-stable variables. The mixture is multiplicative, and defined
by the distribution of volatilities �(t), t 2 [0, T ].

The assumed continuity of �(t) is a key part of the proof. Yet the extreme and rapid fluc-
tuations in �(t), as seen for example through the 101-minute window in the left-hand panel
of the figure, suggest that continuity per se is insu�cient to explain the scaling properties of
all but the smallest intervals. A close look at the proof of the theorem in fact highlights the
contributions of these fluctuations to the near convergence of F̂ (h), already at large values
of h. (See the appendix for a detailed discussion and analysis.) In other words, within
the framework of pricing models of the type depicted in (1.2), non-constant volatility, and
especially high-frequency fluctuations, actually contribute to the empirical scaling of returns,
while at the same time ensuring that the returns themselves are not self similar. Empirical
scaling is consistent with (1.2), and in fact can be viewed as support for rather than evidence
against this class of models.

Finally, we remark on some additional practical and theoretical implications of non-
stationary aggregation. Consider a trader who builds a strategy based, in part, on the idea
that stock returns behave like a self-similar process. As indicated by the theorem, the trader
can indeed estimate the scaling parameter, under a random-walk model, from aggregated
data of stock returns. As for the practical implications, let S = S(R(h)) be a function

of the return sequence R

(h) (= (R(h)
1 , R

(h)
2 , · · · , R

(h)
N

)) representing a trading strategy, such
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as, for example, an event-triggered buy or sell order. If stock returns really were self-
similar, then S(R(h)) ⇠ S(r

1
↵
R

(rh)), meaning that the single strategy would be equivalent
to a multitude of strategies, each executed at its own time scale. But we have argued that
empirical self-similarity is not the same thing as actual self-similarity, and that the latter
is in fact inconsistent with stochastic volatility, at least in the random-walk model. In a
finite-time experiment, the actual relationships among scales are subordinate to the actual
trajectory of volatility, which is rarely well described as stationary, much less constant.

More generally, the practical challenge is to find invariant features in a dynamical sys-
tem that is demonstrably non-stationary. It can not be a surprise that ever-more frequent
introductions of new securities and derivatives, a relentless trend to higher volume, and the
increasing pace of innovation in market making and trading strategies, render an assumption
of temporal homogeneity less and less tenable. How are we to interpret, or even detect, em-
pirical invariants? The challenge is to tease apart the non-stationary and oftentimes highly
circumstantial trends (e.g. in volatility) from any preserved dimensions of the dynamics (e.g.
a scaling exponent in a generalized random-walk model).

One approach is to make a weaker assumption: identify pairs of (generally multivariate)
statistics under which the conditional distribution on one given the other can be reasonably
assumed, or demonstrably approximated, to be homogeneous, e.g. independent of the par-
ticular day, week, month, or year of interest. This works well in neuroscience applications,
where micro-electrode recordings from so-called repeated trials are never actual repeats in
any strict statistical sense; the activities of billions of unrecorded neurons, reflecting the
animal’s fluctuating attention, mood, and general state of mind, are in no way stationary.
But parameters can still be estimated and models can still be tested, by conditioning on
variables that are observable but out of control of the experimenter (see Amarasingham et
al. for a review).

In a study of various financial markets, Preis et al. (2011) demonstrate a remarkable
invariant of the trajectory of volume activity in and around local price extrema, when con-

ditioning on (and hence scaling by) the interval length to the previous extremum. Similarly,
conditioning on a set of returns and then defining large returns (“excursions”) relative to the

conditioned set, can be shown to produce reliably invariant waiting times between excursions
(see Hsieh et al., 2012, Chang et al., 2013). These and other methods of conditional inference
can sidestep some of the barriers to coherent statistical analysis in complex non-stationary
systems.
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[2] L. Bachelier. Théory de la spéculation. Annales Scientifiques de l’Ecole Normale

Supérieure, 3(17):21–86, 1900.

[3] C. Chang, S. Geman, F. Hsieh, and C.-R. Hwang. Invariance in the recurrence of large
returns and the validation of models of price dynamics. submitted for publication, 2013.

[4] P.K. Clark. A subordinated stochastic process model with finite variance for speculative
prices. Econometrica, 41(1):135–155, 1973.

[5] C. Evertsz. Fractal geometry of financial time series. Fractals, 3(3):609–616, 1995.

[6] H. Geman, D.B. Madan, and M. Yor. Time changes for Lévy processes. Mathematical
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Figure 1: Scaling of GARCH-simulated returns One-minute returns on IBM for all of 2005
were used to fit a GARCH model, with autoregressive and moving average terms each of order
10 (p = q = 10). The model was used to generate �(t), for ten years of one-minute volatilities
(t = 1, 2, . . . , 932,400). Left-hand panel shows a typical window with 101 consecutive values of
�. Volatilities were used to generate ten-years of simulated one-minute returns, using (1.2) and
a standard Brownian motion for !. These were summed over disjoint intervals to produce the

corresponding (simulated) returns R(h)
k

, k = 1, 2, . . . , N (h), h = 2i for i = 0, 1, . . . , 10. For each of
the 11 return intervals, the ensemble of returns was used to estimate f (h)(0), the magnitude of the
mass function at zero. Following the approach of Mantegna & Stanley (1995), if R(h)

⇠ h1/↵R(1)

then f (h)(r) = h�1/↵f (1)(rh�1/↵), and hence f (h)(0) = h�1/↵f (1)(0) and log f (h)(0) = �

1
↵

log h +

log f (1)(0). The fit is excellent, as seen in the right-hand panel where the least-squares regression line
is superimposed on the pairs (log h, log f̂ (h)(0)), f̂ (h) denoting a nonparametric, kernel, estimator
of f (h). (We used the Matlab library function ksdensity.) The slope of the regression is about
�0.52, which together with the good fit could be mistaken as evidence for R(h)

⇠ h1/↵R(1) with

↵ = 2. We did not include the superposition of the eleven histograms of scaled returns, h�1/↵R(h)
k

,
k = 1, 2, . . . , N (h), where h = 2i, i = 0, 1, . . . , 10, since they are indistinguishable.
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4 Appendix: Proof and Discussion of the Empirical

Scaling Theorem

We consider the (drift-corrected) model for price movement given by

lnS(t)� lnS(0) =

Z
t

0

�(s)dw(s) t 2 [0, T ] (4.1)

where S(t) is the price of a security at time t, w(t) is an ↵-stable Lévy process (“general-
ized random walk”), and �(t) is either a deterministic function or, if stochastic, then it is
independent of w.

The ↵-stable Lévy process, w, is characterized by a “location parameter” (playing the
role of a mean or mode) which we will take to be zero, a “scale parameter” (which determines
units, and can be absorbed into �(t)) which we will take to be one, a “scaling parameter” ↵

(sometimes called the “stability parameter,” under which w(ht) ⇠ h

1/↵
w(t)) which can be

anything in the interval ↵ 2 (0, 2], and finally a skewness parameter � (which determines
the range of possible steps as well as their symmetry, or lack of symmetry) which we we will
take to be in the interval � 2 (�1, 1), except when ↵ = 1 or ↵ = 2 (corresponding to w(1)
being the Cauchy or Gaussian distribution, respectively), for which � is always zero.2 As
for �(t), we assume that it is either deterministic or independent of the random walk w. In
either case we assume that �(t) is continuous.

Define the return process R(h)
1 , R

(h)
2 , . . . , R

(h)
N

, over intervals of length h, by

R

(h)
k

= ln
S(kh)

S((k � 1)h)
=

Z
kh

(k�1)h

�(s)dw(s), k = 1, 2, . . . , N

where N = N

(h) = bT/hc. And define the empirical cumulative distribution function of the

the scaled returns h�1/↵
R

(h)
k

by

F̂

(h)(r) =
1

N

(h)

N

(h)X

k=1

1(�1,r)(h
�1/↵

R

(h)
k

)

where 1
A

(x) is the indicator function of the event x 2 A. For each r and h, F̂ (h)(r) is the
fraction of the scaled returns that are less than r.

Define the distribution of volatilities by the random variable V = �(U), where U has the
uniform distribution on [0, T ], and let W be independent of V with W ⇠ w(1), where w(t)
is the ↵-stable process in (1.2). Let F (r) = Prob{VW < r}. Then

Theorem.

sup
r

|F̂

(h)(r)� F (r)| ! 0

in probability, as h # 0.

2For completeness, we could also allow � = ±1, when ↵ 2 (0, 1), though this would truncate the possible
values of w(1).)
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Remarks:

1. In other words, for every ✏ > 0:

lim
h#0

Prob{sup
r

|F̂

(h)(r)� F (r)| > ✏} = 0

2. Since sup
r

(·) is bounded 2, convergence in probability implies convergence of moments:
E[sup

r

|F̂

(h)(r)� F (r)|m] ! 0 for all m > 0.

Proof. For any ↵ 2 (0, 2], h > 0, and k = 1, 2, . . . , N (h), define

�̄

(h)
k,↵

=

⇢
1

h

Z
kh

(k�1)h

�(s)↵ds

�1/↵

Then
{h

�1/↵
R

(h)
k

}

N

(h)

k=1 ⇠ {�̄

(h)
k,↵

W

k

}

N

(h)

k=1

where W1,W2, . . . ,W
N

(h) are iid copies of w(1).
Let G(r) = Prob{W < r} be the distribution function of w(1). (Then G is infinitely

di↵erentiable, and each of its derivatives is bounded.) In terms of G,

F (r) =
1

T

Z
T

0

G(
r

�(s)
)ds

By a well-known argument based on the continuity of F , it is enough to show that
F̂

(h)(r) ! F (r) in probability, for each (fixed) r:

F̂

(h)(r)� F (r) = F̂

(h)(r)�
1

T

Z
T

0

G(
r

�(s)
)ds

⇠

1

N

(h)

N

(h)X

k=1

(
1
�̄

(h)
k,↵Wk<r

�G(
r

�̄

(h)
k,↵

)

)
(4.2)

+
1

N

(h)

N

(h)X

k=1

(
G(

r

�̄

(h)
k,↵

)�G(
r

�̄

(h)
k,1

)

)
(4.3)

+
1

N

(h)

N

(h)X

k=1

(
G(

r

1
h

R
kh

(k�1)h �(s)ds
)�

1

h

Z
kh

(k�1)h

G(
r

�(s)
)ds

)
(4.4)

+

(
1

N

(h)
h

Z
N

(h)
h

0

G(
r

�(s)
)ds�

1

T

Z
T

0

G(
r

�(s)
)ds

)
(4.5)

The expression in (4.2) has mean zero and variance at most 1/N (h), and (4.5) is no
bigger than 2/N (h). As for (4.3) and (4.4), we note that the boundedness of G(r) and of
G

0(r) (i.e. the ↵-stable density function) imply the existence of a function �

r,↵

(x) � 0 such
that lim

x!0 �r,↵(x) = 0 and

|G(
r

a

)�G(
r

b

)|  �

r,↵

(|a� b|)

10



for any pair of non-negative numbers a and b. Set a = �̄

(h)
k,↵

and b = �̄

(h)
k,1 and note that, by

the continuity of �, |a� b| ! 0 uniformly in k, which takes care of (4.3). Finally, for each k

replace
1

h

Z
kh

(k�1)h

G(
r

�(s)
)ds

by G( r

�(sk)
) for some s

k

2 [(k�1)h, kh] (mean value theorem), and again use the continuity of

� to conclude that |a� b| ! 0, again uniformly in k, but this time with a = 1
h

R
kh

(k�1)h �(s)ds

and b = �(s
k

). Hence (4.4) vanishes as h ! 0, and this completes the proof.

As remarked in the main text, the experiments indicate that convergence is rapid, and
in fact essentially complete even when h = 1,024. This observation, in the face of the rapid
fluctuations of �(t) on a far shorter time scale, suggest that the continuity of �(t), in and of
itself, is insu�cient to completely explain the empirical results. Here we will take a closer
look at the proof of the theorem, in order to highlight the contributions of the additional
path properties of �(t), beyond just continuity, that explain the near convergence of F̂ (h)

already at large values of h.
|F̂

(h)(r)�F (r)| is bounded by bounding the four expression (4.2), (4.3), (4.4), and (4.5).
There is no mystery about the first and the fourth: the expressions in (4.2) and (4.5) are
small simply because N

(h) is large, the first by virtue of the law of large numbers, and
the second because of a deterministic bound. Rapid convergence in (4.3) and (4.4) is less
obvious. We conclude with a brief analysis of these terms, based on the presumed properties
of typical volatility trajectories.

Beginning with (4.3), we note that the contribution is small provided that �̄(h)
k,↵

is close

to �̄

(h)
k,1 . Depending on whether ↵ > 1 or ↵ < 1, one or the other term is larger by virtue

of Jensen’s inequality. The di↵erence between the two depends on the distribution of �(t),
t 2 [(k � 1)h, kh], and not directly on the continuity or smoothness of �. For most intervals
this distribution is unimodal, in which case the uniform distribution on �([(k�1)h, kh]) gives

an upper bound on the percentage error in replacing �̄

(h)
k,↵

by �̄

(h)
k,1 ; this turns out to be quite

small for all ↵ 2 (0, 2]. A similar conclusion holds in (4.4)—the magnitude of the expression
depends on the distribution of � and not on the smoothness, per se. In particular, (4.4) can
be re-written as the di↵erence between E[G(r/X)] and E[G(r/Y )], where

X =
1

h

Z
Kh

(K�1)h

�(s)ds

with K uniformly distributed on {1, 2, . . . , N (h)
}, and where Y = �(S) with S uniformly

distributed on [0, hN (h)]. Notice that non-stationarity or at least fluctuations in � on time
scales larger than h (e.g. a ten-year trend in increasing volatility) actually works to make
the distributions of X and Y similar, and therefore contributes to making the contribution
from (4.4) small.
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